CAUTION
BEFORE SERVICING THE CHASSIS,
READ THE SAFETY PRECAUTIONS IN THIS MANUAL.
CONTENTS

CONTENTS ... 2
SAFETY PRECAUTIONS .. 3
SPECIFICATION .. 6
ADJUSTMENT INSTRUCTION .. 10
TROUBLE SHOOTING ... 14
BLOCK DIAGRAM .. 20
EXPLODED VIEW .. 22
REPLACEMENT PARTS LIST ... 24
SVC. SHEET ...
SAFETY PRECAUTIONS

IMPORTANT SAFETY NOTICE

Many electrical and mechanical parts in this chassis have special safety-related characteristics. These parts are identified by ▲ in the Schematic Diagram and Replacement Parts List. It is essential that these special safety parts should be replaced with the same components as recommended in this manual to prevent Shock, Fire, or other Hazards. Do not modify the original design without permission of manufacturer.

General Guidance

An isolation Transformer should always be used during the servicing of a receiver whose chassis is not isolated from the AC power line. Use a transformer of adequate power rating as this protects the technician from accidents resulting in personal injury from electrical shocks.

It will also protect the receiver and its components from being damaged by accidental shorts of the circuitry that may be inadvertently introduced during the service operation.

If any fuse (or Fusible Resistor) in this TV receiver is blown, replace it with the specified.

When replacing a high wattage resistor (Oxide Metal Film Resistor, over 1W), keep the resistor 10mm away from PCB.

Keep wires away from high voltage or high temperature parts.

Before returning the receiver to the customer,

always perform an AC leakage current check on the exposed metallic parts of the cabinet, such as antennas, terminals, etc., to be sure the set is safe to operate without damage of electrical shock.

Leakage Current Cold Check(Antenna Cold Check)

With the instrument AC plug removed from AC source, connect an electrical jumper across the two AC plug prongs. Place the AC switch in the on position, connect one lead of ohm-meter to the AC plug prongs tied together and touch other ohm-meter lead in turn to each exposed metallic parts such as antenna terminals, phone jacks, etc.

If the exposed metallic part has a return path to the chassis, the measured resistance should be between 1MΩ and 5.2MΩ.

When the exposed metal has no return path to the chassis the reading must be infinite.

An other abnormality exists that must be corrected before the receiver is returned to the customer.

Leakage Current Hot Check (See below Figure)

Plug the AC cord directly into the AC outlet.

Do not use a line Isolation Transformer during this check.

Connect 1.5K/10watt resistor in parallel with a 0.15uF capacitor between a known good earth ground (Water Pipe, Conduit, etc.) and the exposed metallic parts.

Measure the AC voltage across the resistor using AC voltmeter with 1000 ohms/volt or more sensitivity.

Reverse plug the AC cord into the AC outlet and repeat AC voltage measurements for each exposed metallic part. Any voltage measured must not exceed 0.75 volt RMS which is corresponds to 0.5mA.

In case any measurement is out of the limits specified, there is possibility of shock hazard and the set must be checked and repaired before it is returned to the customer.

Leakage Current Hot Check circuit

(See below diagram)

[Diagram showing Leakage Current Hot Check circuit]
SERVICING PRECAUTIONS

CAUTION: Before servicing receivers covered by this service manual and its supplements and addenda, read and follow the SAFETY PRECAUTIONS on page 3 of this publication.

NOTE: If unforeseen circumstances create conflict between the following servicing precautions and any of the safety precautions on page 3 of this publication, always follow the safety precautions. Remember: Safety First.

General Servicing Precautions
1. Always unplug the receiver AC power cord from the AC power source before;
 a. Removing or reinstalling any component, circuit board module or any other receiver assembly.
 b. Disconnecting or reconnecting any receiver electrical plug or other electrical connection.
 c. Connecting a test substitute in parallel with an electrolytic capacitor in the receiver.
 CAUTION: A wrong part substitution or incorrect polarity installation of electrolytic capacitors may result in an explosion hazard.

2. Test high voltage only by measuring it with an appropriate high voltage meter or other voltage measuring device (DVM, FETVOM, etc) equipped with a suitable high voltage probe.
 Do not test high voltage by "drawing an arc".

3. Do not spray chemicals on or near this receiver or any of its assemblies.

4. Unless specified otherwise in this service manual, clean electrical contacts only by applying the following mixture to the contacts with a pipe cleaner, cotton-tipped stick or comparable non-abrasive applicator; 10% (by volume) Acetone and 90% (by volume) isopropyl alcohol (90%-99% strength)
 CAUTION: This is a flammable mixture.
 Unless specified otherwise in this service manual, lubrication of contacts in not required.

5. Do not defeat any plug/socket B+ voltage interlocks with which receivers covered by this service manual might be equipped.

6. Do not apply AC power to this instrument and/or any of its electrical assemblies unless all solid-state device heat sinks are correctly installed.

7. Always connect the test receiver ground lead to the receiver chassis ground before connecting the test receiver positive lead.
 Always remove the test receiver ground lead last.

8. Use with this receiver only the test fixtures specified in this service manual.
 CAUTION: Do not connect the test fixture ground strap to any heat sink in this receiver.

Electrostatically Sensitive (ES) Devices
Some semiconductor (solid-state) devices can be damaged easily by static electricity. Such components commonly are called Electrostatically Sensitive (ES) Devices. Examples of typical ES devices are integrated circuits and some field-effect transistors and semiconductor "chip" components. The following techniques should be used to help reduce the incidence of component damage caused by static by static electricity.

1. Immediately before handling any semiconductor component or semiconductor-equipped assembly, drain off any electrostatic charge on your body by touching a known earth ground. Alternatively, obtain and wear a commercially available discharging wrist strap device, which should be removed to prevent potential shock reasons prior to applying power to the unit under test.

2. After removing an electrical assembly equipped with ES devices, place the assembly on a conductive surface such as aluminum foil, to prevent electrostatic charge buildup or exposure of the assembly.

3. Use only a grounded-tip soldering iron to solder or unsolder ES devices.

4. Use only an anti-static type solder removal device. Some solder removal devices not classified as "anti-static" can generate electrical charges sufficient to damage ES devices.

5. Do not use freon-propelled chemicals. These can generate electrical charges sufficient to damage ES devices.

6. Do not remove a replacement ES device from its protective package until immediately before you are ready to install it. (Most replacement ES devices are packaged with leads electrically shorted together by conductive foam, aluminum foil or comparable conductive material).

7. Immediately before removing the protective material from the leads of a replacement ES device, touch the protective material to the chassis or circuit assembly into which the device will be installed.
 CAUTION: Be sure no power is applied to the chassis or circuit, and observe all other safety precautions.

8. Minimize bodily motions when handling unpackaged replacement ES devices. (Otherwise harmless motion such as the brushing together of your clothes fabric or the lifting of your foot from a carpeted floor can generate static electricity sufficient to damage an ES device.)

General Soldering Guidelines
1. Use a grounded-tip, low-wattage soldering iron and appropriate tip size and shape that will maintain tip temperature within the range or 500°F to 600°F.

2. Use an appropriate gauge of RMA resin-core solder composed of 60 parts tin/40 parts lead.

3. Keep the soldering iron tip clean and well tinned.

4. Thoroughly clean the surfaces to be soldered. Use a mall wire-bristle (0.5 inch, or 1.25cm) brush with a metal handle.

5. Do not use freon-propelled spray-on cleaners.

6. Use the following unsoldering technique
 a. Allow the soldering iron tip to reach normal temperature. (500°F to 600°F)
 b. Heat the component lead until the solder melts.
 c. Quickly draw the melted solder with an anti-static, suction-type solder removal device or with solder braid.
 CAUTION: Work quickly to avoid overheating the circuit board printed foil.

7. Use the following soldering technique.
 a. Allow the soldering iron tip to reach a normal temperature (500°F to 600°F)
 b. First, hold the soldering iron tip and solder the strand against the component lead until the solder melts.
 c. Quickly move the soldering iron tip to the junction of the component lead and the printed circuit foil, and hold it there until the solder flows onto and around both the component lead and the foil.
 CAUTION: Work quickly to avoid overheating the circuit board printed foil.
 d. Closely inspect the solder area and remove any excess or splashed solder with a small wire-bristle brush.
IC Remove/Replacement

Some chassis circuit boards have slotted holes (oblong) through which the IC leads are inserted and then bent flat against the circuit foil. When holes are the slotted type, the following technique should be used to remove and replace the IC. When working with boards using the familiar round hole, use the standard technique as outlined in paragraphs 5 and 6 above.

Removal
1. Desolder and straighten each IC lead in one operation by gently prying up on the lead with the soldering iron tip as the solder melts.
2. Draw away the melted solder with an anti-static suction-type solder removal device (or with solder braid) before removing the IC.

Replacement
1. Carefully insert the replacement IC in the circuit board.
2. Carefully bend each IC lead against the circuit foil pad and solder it.
3. Clean the soldered areas with a small wire-bristle brush. (It is not necessary to reapply acrylic coating to the areas).

"Small-Signal" Discrete Transistor

Removal/Replacement
1. Remove the defective transistor by clipping its leads as close as possible to the component body.
2. Bend into a "U" shape the end of each of three leads remaining on the circuit board.
3. Bend into a "U" shape the replacement transistor leads.
4. Connect the replacement transistor leads to the corresponding leads extending from the circuit board and crimp the "U" with long nose pliers to insure metal to metal contact then solder each connection.

Power Output, Transistor Device

Removal/Replacement
1. Heat and remove all solder from around the transistor leads.
2. Remove the heat sink mounting screw (if so equipped).
3. Carefully remove the transistor from the heat sink of the circuit board.
4. Insert new transistor in the circuit board.
5. Solder each transistor lead, and clip off excess lead.
6. Replace heat sink.

Diode Removal/Replacement
1. Remove defective diode by clipping its leads as close as possible to diode body.
2. Bend the two remaining leads perpendicular to the circuit board.
3. Observing diode polarity, wrap each lead of the new diode around the corresponding lead on the circuit board.
4. Securely crimp each connection and solder it.
5. Inspect (on the circuit board copper side) the solder joints of the two "original" leads. If they are not shiny, reheat them and if necessary, apply additional solder.

Fuse and Conventional Resistor

Removal/Replacement
1. Clip each fuse or resistor lead at top of the circuit board hollow stake.
2. Securely crimp the leads of replacement component around notch at stake top.
3. Solder the connections.
CAUTION: Maintain original spacing between the replaced component and adjacent components and the circuit board to prevent excessive component temperatures.

Circuit Board Foil Repair

Excessive heat applied to the copper foil of any printed circuit board will weaken the adhesive that bonds the foil to the circuit board causing the foil to separate from or "lift-off" the board. The following guidelines and procedures should be followed whenever this condition is encountered.

At IC Connections
To repair a defective copper pattern at IC connections use the following procedure to install a jumper wire on the copper pattern side of the circuit board. (Use this technique only on IC connections).

1. Carefully remove the damaged copper pattern with a sharp knife. (Remove only as much copper as absolutely necessary).
2. Carefully scratch away the solder resist and acrylic coating (if used) from the end of the remaining copper pattern.
3. Bend a small "U" in one end of a small gauge jumper wire and carefully crimp it around the IC pin. Solder the IC connection.
4. Route the jumper wire along the path of the out-away copper pattern and let it overlap the previously scraped end of the good copper pattern. Solder the overlapped area and clip off any excess jumper wire.

At Other Connections
Use the following technique to repair the defective copper pattern at connections other than IC Pins. This technique involves the installation of a jumper wire on the component side of the circuit board.

1. Remove the defective copper pattern with a sharp knife. Remove at least 1/4 inch of copper, to ensure that a hazardous condition will not exist if the jumper wire opens.
2. Trace along the copper pattern from both sides of the pattern break and locate the nearest component that is directly connected to the affected copper pattern.
3. Connect insulated 20-gauge jumper wire from the lead of the nearest component on one side of the pattern break to the lead of the nearest component on the other side. Carefully crimp and solder the connections.
CAUTION: Be sure the insulated jumper wire is dressed so that it does not touch components or sharp edges.
1. Application range
This specification is applied to the 19”/22” Wide LCD TV used LN72A chassis.

2. Requirement for Test
Testing for standard of each part must be followed in below condition.

(1) Power : Standard input voltage (100-240V~, 50/60Hz)
*Standard Voltage of each products is marked by models.
(2) Specification and performance of each parts are followed each drawing and specification by part number in accordance with BOM.
(3) The receiver must be operated for about 20 minutes prior to the adjustment.

3. General Specification(TV)

<table>
<thead>
<tr>
<th>No</th>
<th>Item</th>
<th>Specification</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Video input applicable system</td>
<td>NTSC, NTSC 4.43</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Receivable Broadcasting System</td>
<td>PAL N/M, NTSC M</td>
<td>Central and South America</td>
</tr>
<tr>
<td>3</td>
<td>RF Input Channel</td>
<td>VHF : 2 ~ 13</td>
<td>PAL N/M, NTSC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UHF : 14 ~ 69</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CATV : 1 ~ 125</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Input Voltage</td>
<td>100-240V~, 50/60Hz</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Market</td>
<td>Central and South America</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Tuning System</td>
<td>FS</td>
<td>PAL N/M, NTSC</td>
</tr>
<tr>
<td>7</td>
<td>Operating Environment</td>
<td>Temp : 0 ~ 40 deg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Humidity : 10~90 %RH</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Storage Environment</td>
<td>Temp : -20 ~ 50 deg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Humidity : 10~90 %RH</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Display</td>
<td>LCD Module</td>
<td></td>
</tr>
</tbody>
</table>
4. Module Specification
4.1. 22” LCD MODULE (LPL LM220WE1-TLA1)

<table>
<thead>
<tr>
<th>No.</th>
<th>Item</th>
<th>Min</th>
<th>Typ.</th>
<th>Max</th>
<th>Unit</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Display area</td>
<td>473.4 (H) x 296.1 (V)</td>
<td>mm</td>
<td>Max</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Outline dimension</td>
<td>493.7 (H) x 320.1 (V) x 16.5 (D)</td>
<td>mm</td>
<td>Max</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Number of Pixels</td>
<td>1680 (H) x 1050 (V)</td>
<td>1Pixel=3RGB Cells</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Cell pitch</td>
<td>0.282mm (H) x 0.282mm (V)</td>
<td>mm</td>
<td>1Pixel=3RGB Cells</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Color arrangement</td>
<td>RGB vertical stripe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Weight (net)</td>
<td>TBD</td>
<td>Kg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Operating Environment</td>
<td>Temperature</td>
<td>0 ~ 50</td>
<td>deg</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Humidity</td>
<td>10 ~ 90</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Storage Environment</td>
<td>Temperature</td>
<td>-20 ~ 60</td>
<td>deg</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Humidity</td>
<td>10 ~ 90</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Electrical Interface</td>
<td>LVDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Back light Unit</td>
<td>4 CCFL (4 lamps)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Response Time</td>
<td>5ms</td>
<td></td>
<td>Typ</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.2. Electro optical characteristic specifications (module standard)

<table>
<thead>
<tr>
<th>No.</th>
<th>Item</th>
<th>Specification</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Typ.</td>
</tr>
<tr>
<td>1</td>
<td>Viewing Angle <CR≥10></td>
<td>R/L</td>
<td>80/80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U/D</td>
<td>75/85</td>
</tr>
<tr>
<td>2</td>
<td>Luminance</td>
<td>Luminance (cd/m²)</td>
<td>190</td>
</tr>
<tr>
<td>3</td>
<td>Contrast Ratio</td>
<td>CR</td>
<td>500</td>
</tr>
<tr>
<td>4</td>
<td>CIE Color Coordinates</td>
<td>WHITE Wx</td>
<td>Typ.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wy</td>
<td>-0.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RED Rx</td>
<td>0.635</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ry</td>
<td>0.342</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GREEN Gx</td>
<td>0.297</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gy</td>
<td>0.611</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BLUE Bx</td>
<td>0.147</td>
</tr>
<tr>
<td></td>
<td></td>
<td>By</td>
<td>0.070</td>
</tr>
</tbody>
</table>
5. Model Specification

<table>
<thead>
<tr>
<th>No</th>
<th>Item</th>
<th>Specification</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Market</td>
<td>Central and South America</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Broadcasting system</td>
<td>PAL N/M, NTSC M</td>
<td>Central and South America</td>
</tr>
<tr>
<td>3</td>
<td>RF Input Channel</td>
<td>VHF : 2 – 13, UHF : 14 – 69, CATV : 1 – 125</td>
<td>NTSC</td>
</tr>
<tr>
<td>4</td>
<td>Video Input (1EA)</td>
<td>PAL N/M, NTSC</td>
<td>3 System(Rear) : PAL50/60, NTSC</td>
</tr>
<tr>
<td>5</td>
<td>S-Video Input (1EA)</td>
<td>PAL N/M, NTSC</td>
<td>3 System(Rear) : PAL50/60, NTSC</td>
</tr>
<tr>
<td>6</td>
<td>Component Input (1EA)</td>
<td>Y/ Pb/Pr</td>
<td>480i/576i/1080i/1080i</td>
</tr>
<tr>
<td>7</td>
<td>RGB Input (1EA)</td>
<td>RGB-PC, RGB-DTV</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>HDMI Input (1EA)</td>
<td>HDMI-PC, HDMI-DTV</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Audio Input (2EA)</td>
<td>2EA : CVBS, PC Audio</td>
<td>L/R Input</td>
</tr>
</tbody>
</table>

6. Component Video Input (Y, PB, PR)

<table>
<thead>
<tr>
<th>No</th>
<th>Resolution</th>
<th>H-freq(kHz)</th>
<th>V-freq.(kHz)</th>
<th>Pixel clock(MHz)</th>
<th>Proposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>720*480</td>
<td>15.73</td>
<td>59.94</td>
<td>13.500</td>
<td>SDTV, DVD 480i(525i)</td>
</tr>
<tr>
<td>2</td>
<td>720*480</td>
<td>15.75</td>
<td>59.94</td>
<td>13.514</td>
<td>SDTV, DVD 480i(525i)</td>
</tr>
<tr>
<td>3</td>
<td>720*576</td>
<td>15.625</td>
<td>50.00</td>
<td>13.500</td>
<td>SDTV, DVD 576i(625i)</td>
</tr>
<tr>
<td>4</td>
<td>720*480</td>
<td>31.47</td>
<td>59.94</td>
<td>27.000</td>
<td>SDTV 480P</td>
</tr>
<tr>
<td>5</td>
<td>720*480</td>
<td>31.50</td>
<td>60.00</td>
<td>27.027</td>
<td>SDTV 480P</td>
</tr>
<tr>
<td>6</td>
<td>720*576</td>
<td>31.25</td>
<td>50.00</td>
<td>27.000</td>
<td>SDTV 576P</td>
</tr>
<tr>
<td>7</td>
<td>1280*720</td>
<td>44.96</td>
<td>59.94</td>
<td>74.176</td>
<td>HDTV 720P</td>
</tr>
<tr>
<td>8</td>
<td>1280*720</td>
<td>45.00</td>
<td>59.94</td>
<td>74.250</td>
<td>HDTV 720P</td>
</tr>
<tr>
<td>9</td>
<td>1280*720</td>
<td>37.50</td>
<td>50.00</td>
<td>74.250</td>
<td>HDTV 720P</td>
</tr>
<tr>
<td>10</td>
<td>1920*1080</td>
<td>33.72</td>
<td>59.94</td>
<td>74.176</td>
<td>HDTV 1080i</td>
</tr>
<tr>
<td>11</td>
<td>1920*1080</td>
<td>33.75</td>
<td>60.00</td>
<td>74.250</td>
<td>HDTV 1080i</td>
</tr>
<tr>
<td>12</td>
<td>1920*1080</td>
<td>28.125</td>
<td>50.00</td>
<td>74.250</td>
<td>HDTV 1080i</td>
</tr>
</tbody>
</table>

7. RGB Input (PC)

<table>
<thead>
<tr>
<th>No</th>
<th>Resolution</th>
<th>H-freq(kHz)</th>
<th>V-freq.(kHz)</th>
<th>Pixel clock(MHz)</th>
<th>Proposed</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>720*400</td>
<td>31.469</td>
<td>70.08</td>
<td>28.32</td>
<td>DOS</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>640*480</td>
<td>31.469</td>
<td>59.94</td>
<td>25.17</td>
<td>VESA(VGA)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>800*600</td>
<td>37.879</td>
<td>60.31</td>
<td>40.00</td>
<td>VESA(SVGA)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1024*768</td>
<td>48.363</td>
<td>60.00</td>
<td>65.00</td>
<td>VESA(XGA)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1280*1024</td>
<td>63.981</td>
<td>60.02</td>
<td>108.0</td>
<td>VESA(WXGA)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1440*900</td>
<td>55.5</td>
<td>59.90</td>
<td>88.75</td>
<td>WXGA</td>
<td>19LS4R-MA only</td>
</tr>
<tr>
<td>7</td>
<td>1680*1050</td>
<td>65.290</td>
<td>59.954</td>
<td>146.25</td>
<td>WXGA+</td>
<td>22LS4R-MA only</td>
</tr>
</tbody>
</table>
8. RGB input (DTV)

<table>
<thead>
<tr>
<th>No</th>
<th>Resolution</th>
<th>H-freq(kHz)</th>
<th>V-freq.(kHz)</th>
<th>Pixel clock(MHz)</th>
<th>Proposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>720*480</td>
<td>31.47</td>
<td>59.94</td>
<td>27.000</td>
<td>SDTV 480P</td>
</tr>
<tr>
<td>2</td>
<td>720*480</td>
<td>31.50</td>
<td>60.00</td>
<td>27.027</td>
<td>SDTV 480P</td>
</tr>
<tr>
<td>3</td>
<td>720*576</td>
<td>31.25</td>
<td>50.00</td>
<td>27.000</td>
<td>SDTV 576P</td>
</tr>
<tr>
<td>4</td>
<td>1280*720</td>
<td>37.5</td>
<td>50.00</td>
<td>74.250</td>
<td>HDTV 720P 50Hz</td>
</tr>
<tr>
<td>5</td>
<td>1280*720</td>
<td>44.96</td>
<td>59.94</td>
<td>74.176</td>
<td>HDTV 720P</td>
</tr>
<tr>
<td>6</td>
<td>1280*720</td>
<td>45.00</td>
<td>60.00</td>
<td>74.250</td>
<td>HDTV 720P</td>
</tr>
<tr>
<td>7</td>
<td>1920*1080</td>
<td>33.72</td>
<td>59.94</td>
<td>74.176</td>
<td>HDTV 1080i</td>
</tr>
<tr>
<td>8</td>
<td>1920*1080</td>
<td>33.75</td>
<td>60.00</td>
<td>74.250</td>
<td>HDTV 1080i</td>
</tr>
<tr>
<td>9</td>
<td>1920*1080</td>
<td>28.125</td>
<td>50.00</td>
<td>74.250</td>
<td>HDTV 1080i 50Hz</td>
</tr>
</tbody>
</table>

9. HDMI/DVI input (PC)

<table>
<thead>
<tr>
<th>No</th>
<th>Resolution</th>
<th>H-freq(kHz)</th>
<th>V-freq.(Hz)</th>
<th>Pixel clock(MHz)</th>
<th>Proposed</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>720*400</td>
<td>31.469</td>
<td>70.08</td>
<td>28.32</td>
<td>DOS</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>640*480</td>
<td>31.469</td>
<td>59.94</td>
<td>25.17</td>
<td>VESA(VGA)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>640*350</td>
<td>31.468</td>
<td>70.090</td>
<td>25.175</td>
<td>DOS</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>800*600</td>
<td>37.879</td>
<td>60.31</td>
<td>40.00</td>
<td>VESA(SVGA)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1024*768</td>
<td>48.363</td>
<td>60.00</td>
<td>65.00</td>
<td>VESA(XGA)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1280*1024</td>
<td>63.981</td>
<td>60.02</td>
<td>108.0</td>
<td>VESA(WXGA)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1440*900</td>
<td>55.5</td>
<td>59.90</td>
<td>88.75</td>
<td>WXGA+</td>
<td>19LS4R-MA only</td>
</tr>
<tr>
<td>8</td>
<td>1680*1050</td>
<td>65.290</td>
<td>59.954</td>
<td>146.25</td>
<td>WXGA+</td>
<td>22LS4R-MA only</td>
</tr>
</tbody>
</table>

10. HDMI/DVI input (DTV)

<table>
<thead>
<tr>
<th>No</th>
<th>Resolution</th>
<th>H-freq(kHz)</th>
<th>V-freq.(kHz)</th>
<th>Pixel clock(MHz)</th>
<th>Proposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>720*480</td>
<td>31.47</td>
<td>59.94</td>
<td>27.000</td>
<td>SDTV 480P</td>
</tr>
<tr>
<td>2</td>
<td>720*480</td>
<td>31.50</td>
<td>60.00</td>
<td>27.027</td>
<td>SDTV 480P</td>
</tr>
<tr>
<td>3</td>
<td>720*576</td>
<td>31.25</td>
<td>50.00</td>
<td>27.000</td>
<td>SDTV 576P</td>
</tr>
<tr>
<td>4</td>
<td>1280*720</td>
<td>37.5</td>
<td>50.00</td>
<td>74.250</td>
<td>HDTV 720P</td>
</tr>
<tr>
<td>5</td>
<td>1280*720</td>
<td>44.96</td>
<td>59.94</td>
<td>74.176</td>
<td>HDTV 720P</td>
</tr>
<tr>
<td>6</td>
<td>1280*720</td>
<td>45.00</td>
<td>60.00</td>
<td>74.250</td>
<td>HDTV 720P</td>
</tr>
<tr>
<td>7</td>
<td>1920*1080</td>
<td>33.72</td>
<td>59.94</td>
<td>74.176</td>
<td>HDTV 1080i</td>
</tr>
<tr>
<td>8</td>
<td>1920*1080</td>
<td>33.75</td>
<td>60.00</td>
<td>74.250</td>
<td>HDTV 1080i</td>
</tr>
<tr>
<td>9</td>
<td>1920*1080</td>
<td>28.125</td>
<td>50.00</td>
<td>74.250</td>
<td>HDTV 1080i 50Hz</td>
</tr>
</tbody>
</table>
1. **Application Range**
 This specification sheet is applied to 19”/22” LCD TV which is manufactured in TV (or Monitor) Factory or is produced on the basis of this data.

2. **Specification**
 1) The adjustment is according to the order which is designated and which must be followed, according to the plan which can be changed only on agreeing.
 2) Power Adjustment: Free Voltage
 3) Magnetic Field Condition: Nil.
 4) Input signal Unit: Product Specification Standard
 5) Reserve after operation: Above 30 Minutes
 6) Adjustment equipments: Color Analyzer(CA-210 or CA-110), Pattern Generator (MSPG-925L or Equivalent), DDC Adjustment Jig equipment, SVC remote control

3. **Main PCB check process**
 * APC - After Manual-Insult, executing APC

3.1. **Download**
 1) Execute ISP program “Mstar ISP Utility” and then click “Config” tab.
 2) Set as below, and then click “Auto Detect” and check “OK” message.
 - If display “Error”, Check connect computer, jig, and set.
 3) Click “Connect” tab.
 - If display “Can’t”, Check connect computer, jig, and set.
 4) Click “Read” tab, and then load download file(XXXX.bin) by clicking “Read”.
 5) Click “Auto” tab and set as below
 6) click “Run”.
 7) After downloading, check “OK” message.

3.2. **ADC Process**
 (1) **PC input ADC**
 1) Auto RGB Gain/Offset Adjustment
 - Convert to PC in Input-source
 - Signal equipment displays
 - Output Voltage : 730 mVp-p
 - Impress Resolution XGA (1024x 768 @ 60Hz)
 - Model : 107 in Pattern Generator
 - Pattern : 28 in Pattern Generator (MSPG-925 Series)
 - [gray pattern that left & right is black and center is white signal (Refer below picture)].
 - Adjust by commanding AUTO_COLOR _ADJUST (0xF1) 0x00 0x02 instruction.
 2) Confirmation
 - We confirm whether “0x8C” address of EEPROM “0xB4” is “0xAA” or not.
 - If “0x8C” address of EEPROM “0xB4” isn’t “0xAA”, we adjust once more.
 - We can confirm the ADC values from “0x00~0x05” addresses in a page “0xB4”
 - After enter Service Mode by pushing “INSTART” key, execute “Auto-RGB” by pushing “▶” key at “Auto-RGB”.

(2) **COMPONENT input ADC**
 1) Component Gain/Offset Adjustment
 - Convert to Component in Input-source
 - Signal equipment displays
 - Impress Resolution 480P
 - MODEL : 212 in Pattern Generator
 - PATTERN : 08 in Pattern Generator (MSPG-925 Series)
4.5. Other quality
- Confirm that each items satisfy under standard condition that was written product spec.
- Confirm Video and Sound at each source.

(1) Video
- Select input Video (CVBS, S-video) and whether picture is displayed or not

(2) TV
- Select input TV whether picture is displayed or not.

(3) RGB
- Select input RGB and whether picture is displayed or not.

(4) COMPONENT
- Select input COMPONENT and whether picture is displayed or not.

(5) HDMI
- Select input HDMI and whether picture is displayed or not.

4.6. DPM operation confirmation
- Check if Power LED Color and Power Consumption operate as standard.
 (1) Set Input to RGB and connect D-sub cable to set.
 (2) Measurement Condition : 230V @ 50Hz (Analog)
 (3) Confirm DPM operation at the state of screen without Signal

4.7 DDC EDID Write
1) Connect D-sub Signal Cable to D-Sub Jack.
2) Connect HDMI Signal Cable to HDMI Jack.
3) Write EDID DATA to EEPROM(24C02) by using DDC2B protocol.
4) Check whether written EDID data is correct or not. (refer to Product spec.)

(1) 22LS4R EDID DATA
1) ANALOG DATA 128Byte

- Adjust by commanding AUTO_COLOR_ADJUST (0xF1) 0x00 0x02 instruction.

2) Confirmation
- We confirm whether “0x8E” address of EEPROM “0xB4” is “0xAA” or not.
- If “0x8E” address of EEPROM “0xB4” isn’t “0xAA”, we adjust once more.
- We can confirm the ADC values from “0x00~0x05” addresses in a page “0xB4”.

3.3. Function Check

- Check display and sound
 - Check Input and Signal items. (cf. work instructions)
 1) TV
 2) Video
 3) COMPONENT (480P)
 4) RGB (PC : 1024 x 768 @ 60hz)
 5) HDMI
 6) PC Audio In and H/P Out
 * Display and Sound check is executed by Remote control.

4. Total Assembly line process
4.1. Adjustment Preparation
(1) Above 30 minutes H/run in RF no signal
(2) 15 Pin D-Sub Jack is connected to the signal of Pattern Generator.

4.2. Confirm color coordinate of RGB
(1) Set Input to RGB.
(2) Input signal : (1440 x 900@60Hz) -> 19LS4R
 Full white 216/255 gray level (85 IRE, Model : 112, Pattern : 78 at MSPG925L)
(3) Input signal : (1680 x 1050@60Hz) -> 22LS4R
 Full white 216/255 gray level (85 IRE, Model : 112, Pattern : 78 at MSPG925L)
(4) Set ACC : Cool
(5) Confirm whether x = 0.285±0.03, y = 0.293±0.03 or not.

4.3. Confirm color coordinate of Video
(1) Set Input to AV2.
(2) Input signal : CVBS, NTSC@60Hz
(3) Set APC : Clear / ACC : Cool
(4) Confirm whether x=0.285±0.015, y=0.293±0.015 or not.

4.4. Confirm color coordinate of component
(1) Set Input to COMPONENT.
(2) Input signal : 480P
 Full white 216/255 gray level (85 IRE Model : 212, Pattern : 78 at MSPG925L)
(3) Set APC : Dynamic / ACC : Cool
(4) Confirm whether x = 0.285±0.03, y = 0.293±0.03 or not.
2) DIGITAL DATA 256Byte

- All Data : HEXA Value
- Changeble Data
 * Serial No : Controlled/ Data : 01
 ** Month : Controlled/ Data : 00
 *** Year : Controlled
 **** Check sum

4.8. HDCP SETTING
(High-Bandwidth Digital Contents Protection)

1) Connect D-sub Signal Cable to D-Sub Jack.
2) Input HDCP key with HDCP-key-in-program.
3) HDCP Key value is stored on EEPROM(AT24C64) which is
 E00~F20 addresses of 0xBC~0xBE page.
4) AC off/ on and on HDCP button of MSPG925 and confirm
 whether picture is displayed or not of using MSPG925.
5) HDCP Key value is different among the sets.

4.9. Outgoing condition Configuration

1) After all function test., press IN-STOP Key by SVC Remote
 control. And Make Ship Condition.
2) When pressing IN-STOP key by SVC remote control,
 Green and red LED are blinked alternatively. And then
 Automatically turn off. (Must not AC power OFF during
 blinking)

4.10. Internal pressure

- Confirm whether is normal or not when between power
 board’s ac block and GND is impacted on 1.5kV(dc) or
 2.2kV(dc) for one second.

4.11 Option data setting (SVC OSD setting)

<table>
<thead>
<tr>
<th>No.</th>
<th>Item</th>
<th>Condition</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option1</td>
<td>1</td>
<td>BOOSTER</td>
<td>0</td>
</tr>
<tr>
<td>Option2</td>
<td>1</td>
<td>A2 Threshold</td>
<td>1 Acting FM-ST after checking Nicam</td>
</tr>
<tr>
<td>2</td>
<td>V-CURVE</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>MONO</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Option3</td>
<td>1</td>
<td>KEY-TYPE</td>
<td>2 2 : 8 key</td>
</tr>
<tr>
<td>Option4</td>
<td>1</td>
<td>Default Lang</td>
<td>0</td>
</tr>
</tbody>
</table>
| Option5 | 1 | 2 HR-OFF | 1 0 : 2 Hour off option-OFF
 1 : 2 Hour off option-ON |
| 2 | TV-LINK-TUNER | 0 |
| 3 | FACTORY MODE | 0 0 : EEPROM Write Protection On
 1 : EEPROM Write Protection Off |
| 4 | CHANNEL-MUTE | 1 |
5. Adjustment Command

5.1. Adjustment Commands(LENGTH=84)

<table>
<thead>
<tr>
<th>Adjustment Contents</th>
<th>CMD (hex)</th>
<th>ADR</th>
<th>VAL</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACTORY ON</td>
<td>E0</td>
<td>00</td>
<td>00</td>
<td>Factory mode on</td>
</tr>
<tr>
<td>FACTORY OFF</td>
<td>E2</td>
<td>00</td>
<td>00</td>
<td>Factory mode off</td>
</tr>
<tr>
<td>EEPROM ALL INIT.</td>
<td>E4</td>
<td>00</td>
<td>00</td>
<td>EEPROM All clear</td>
</tr>
<tr>
<td>EEPROM Read</td>
<td>E7</td>
<td>00</td>
<td>00</td>
<td>EEPROM Read</td>
</tr>
<tr>
<td>EEPROM Write</td>
<td>E8</td>
<td>00</td>
<td>data</td>
<td>EEPROM Write by some values</td>
</tr>
<tr>
<td>COLOR SAVE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R/G/B cutoff, Drive,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contrast, Bright)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H POSITION</td>
<td>20</td>
<td>00</td>
<td>00 – 100</td>
<td>They have different range each mode, FOS Adjustment</td>
</tr>
<tr>
<td>V POSITION</td>
<td>30</td>
<td>00</td>
<td>00 – 100</td>
<td></td>
</tr>
<tr>
<td>CLOCK</td>
<td>90</td>
<td>00</td>
<td>00 – 100</td>
<td></td>
</tr>
<tr>
<td>PHASE</td>
<td>92</td>
<td>00</td>
<td>00 – 100</td>
<td></td>
</tr>
<tr>
<td>R DRIVE</td>
<td>16</td>
<td>00</td>
<td>00 – FF</td>
<td>Drive adjustment</td>
</tr>
<tr>
<td>G DRIVE</td>
<td>18</td>
<td>00</td>
<td>00 – FF</td>
<td></td>
</tr>
<tr>
<td>B DRIVE</td>
<td>1A</td>
<td>00</td>
<td>00 – FF</td>
<td></td>
</tr>
<tr>
<td>R CUTOFF</td>
<td>80</td>
<td>00</td>
<td>00 – 7F</td>
<td>Offset adjustment</td>
</tr>
<tr>
<td>G CUTOFF</td>
<td>82</td>
<td>00</td>
<td>00 – 7F</td>
<td></td>
</tr>
<tr>
<td>B CUTOFF</td>
<td>84</td>
<td>00</td>
<td>00 – 7F</td>
<td></td>
</tr>
<tr>
<td>BRIGHT</td>
<td>10</td>
<td>00</td>
<td>00 – 3F</td>
<td>Bright adjustment</td>
</tr>
<tr>
<td>CONTRAST</td>
<td>12</td>
<td>00</td>
<td>00 - 64</td>
<td>Luminance adjustment</td>
</tr>
<tr>
<td>AUTO_COLOR_ADJUST</td>
<td>F1</td>
<td>00</td>
<td>02</td>
<td>Auto COLOR Adjustment</td>
</tr>
<tr>
<td>CHANGE_COLOR_TEMP</td>
<td>F2</td>
<td>00</td>
<td>0,1,2,3</td>
<td>0: COOL, 1: NORMAL, 2: WARM, 3: USER</td>
</tr>
<tr>
<td>FACTORY_DEFAULT</td>
<td>F3</td>
<td>00</td>
<td>00</td>
<td>Factory mode off & II_SW is "1" & Input change to "TV"</td>
</tr>
<tr>
<td>AUTO_INPUT_CHANGE</td>
<td>F4</td>
<td>00</td>
<td>0,1,2,4</td>
<td>0: TV, 1: AV1, 2: AV2, 3: Component, 4: RGB, 5: DVI</td>
</tr>
</tbody>
</table>

5.2 EEPROM DATA READ

(1) Signal Table

5.3. EEPROM Data Write

(1) Signal Table

5.4. VRAM Read

1) Send CMD(70h) to read Video RAM value from MICOM And save its value to 128-Bytes Buffer.(Common Buffer for the use of EDID)

2) Delay 500ms. (Time to Wait and Read Video RAM from MICOM)

3) Be transmitted the contents of MICOM’s 128-bytes Buffer to PC. (128th Data is the CheckSum of 127-bytes data : That’s OK if the value of adding 128-bytes Data is Zero)
1. No Power (LED indicator off) : [A] Process

- Check 15V or ST_5V of Power B/D.
 - Pass
 - Fail → Check short of Main B/D or Change Power B/D.

- Check Output of IC1100, IC1101.
 - Pass
 - Fail → Check short of IC100, Q307.
 - Fail → Re-soldering or Change defect part of IC100, Q307.
 - Pass → Change IC1100, IC1101.

- Check Output of IC1102.
 - Pass
 - Fail → Check short of Q307, TU600, IC500.
 - Fail → Re-soldering or Change defect part of Q307, TU600, IC500.
 - Pass → Change IC1102, IC1103.

- Check Output of IC1104, IC1105.
 - Pass
 - Fail → Check short of IC100, IC400.
 - Fail → Re-soldering or Change defect part of IC100, IC400.
 - Pass → Change IC1104, IC1105.

- Check LED Assy.
 - Fail → Change LED Assy.
 - Pass → Check P304 Connector.
2. No RASTER : [B] Process

- Check LED status On Display Unit.
 - Pass
 - Fail => Repeat A PROCESS.
- Check Panel Link Cable or Module.
 - Pass
 - Fail => Change Panel Link Cable or Module.
- Check Inverter Connector or inverter.
 - Pass
 - Fail => Change Inverter Connector or Inverter.
- Check Output of L300.
 - Pass
 - Fail => Change L300.
- Check the LVDS Output of IC100.
 - Pass
 - Fail => Change IC100
- Check Input source Cable and Jack.
 - Fail => Change Module.
3. No RASTER on PC Signal

Repeat [A, B] process.

Pass

Check the input/output of R735, R736.

Fail

Check the J701.

Pass

Check the input/output of R128, R131, R136.

Fail

Re-soldering or Change the defect part.

Pass

Check the input/output of IC100.

Fail

Re-soldering or change the defect part, Check the X100.

Pass

Check input source cable and jack.
4. No Raster on Component Signal

Repeat [A, B] process.

Pass

Check the input/output of R901.

Fail

Check the J900.

Pass

Check the input/output of R125.

Pass

Check the input/output of IC100.

Pass

Check input source cable and jack.

Fail

Re-soldering or Change the defect part.

Fail

Re-soldering or change the defect part. Check the X100.
5. No Raster on HDMI Signal

- Repeat [A, B] process.
 - Pass
 - Fail
 - Re-soldering or change the defect part. Check the X100.
 - Pass
 - Fail
 - Check input source cable and jack.

6. No Raster on AV(Scart in Video, S-Video) Signal

- Repeat [A, B] process.
 - Pass
 - Fail
 - Check the output of IC100.
 - Pass
 - Check the output of TU600.
 - Fail
 - Check 5V of TU600. Re-Soldering or change the defect part.
 - Pass
 - Change L1002, L1003, L1004.
 - Pass
 - Check input/output of IC100.
 - Fail
 - Re-soldering of Change defect part. Check the X100.
 - Check input source cable and jack.
8. No sound

1. **Check the input Source.**
 - **Pass**
 - **Fail**
 - **Check input/Output of IC100.**
 - **Pass**
 - **Fail**
 - **Check the input/output of IC500**
 - **Pass**
 - **Fail**
 - **Check the Speaker**
 - **Fail**
 - **Change Speaker.**
 - **Pass**
 - **Check the Speaker wire.**
 - **Pass**
 - **Fail**
 - **Re-soldering or Change the defect part.**
 - **Pass**
 - **Fail**
 - **Change the source input.**